Nursing care plan with 3 nursing diagnosis  Simulation Case study: Clinical Management of a patient with acute onset Atrial Fibrillation  Patient D is a man, 68 years of age, who presents to the emergency department late one evening complaining of increasing shortness of breath, dizziness, and the sensation of his “heart racing.” On admission, his heart rate is 160 bpm, blood pressure 100/50 mm Hg, respirations 26 breaths per minute, and oxygen saturation 88% on room air. Patient D says that his symptoms started abruptly earlier that day and have steadily become worse. He reports a history of long-standing hypertension, coronary artery disease, and a recent percutaneous transluminal angioplasty with placement of two stents.Comments and rationale: Symptoms such as those Patient D presents are common indications of acute onset atrial fibrillation with rapid ventricular response. His past medical history is positive for risk factors for the development of atrial fibrillation. These include a positive cardiac history, with hypertension and coronary artery disease, as well as increasing age.A 12-lead ECG is obtained. It shows a narrow QRS complex tachycardia with an irregularly irregular rhythm. A diagnosis of atrial fibrillation with rapid ventricular response is made. Oxygen via nasal cannula at 2 liters is started. Patient D is attached to continuous telemetry, oxygen saturation, and noninvasive blood pressure monitoring. Telemetry monitoring shows a variable heart rate ranging from 120 to 160 bpm. At lower rates, fibrillatory waves are present. Crackles are present in the bases of both lungs. Peripheral pulses are diminished and irregular. Patient D’s skin is cool but dry. A peripheral IV access is established. After determining that Patient D has no known allergies to medications, 20 mg of diltiazem is prescribed to be given by IV push.Comments and rationale: ECG characteristics associated with atrial fibrillation with rapid ventricular rate include a QRS complex within normal limits (sometimes called “narrow complex”) and an irregularly irregular ventricular rhythm. Sinus P waves are absent. At rapid rates, the irregular rhythm and absence of P waves may be difficult to determine. Fibrillatory waves are present but are often not seen at rapid rates. Because of the variable filling time associated with atrial fibrillation, pulse pressure may be intermittent and some beats may not perfuse well to the periphery. Loss of normal atrial contraction coupled with tachycardic heart rates may precipitate signs of heart failure, such as dyspnea, rales, and hypotension. Patient D is symptomatic with his atrial fibrillation but not dangerously unstable (with rapidly falling blood pressure, rapidly increasing signs of heart failure, or increasing chest pain). Therefore, the initial goal of treatment is to slow his heart rate. Diltiazem, a calcium channel blocker, slows conduction through the AV node and prolongs the AV node refractory period, thus slowing the ventricular rate in atrial fibrillation. It has a rapid onset of action. Because IV diltiazem administration is associated with development of bradycardia, heart block, increased signs of congestive heart failure, and hypotension, the patient should be continuously monitored during and after its administration. If the diagnosis of atrial fibrillation with rapid ventricular response cannot be made, adenosine may be used to establish a diagnosis. Oxygen by nasal cannula is used to increase oxygen saturation and decrease the subjective sensation of dyspnea.In response to the IV diltiazem, Patient D’s heart rate initially slowed to a rate of 110 to 120 bpm but rapidly returned to a high rate. After 15 minutes, another bolus was ordered, followed by a continuous infusion of diltiazem at 5 mg/hour. The orders indicated that the drip could be titrated up to a maximum of 15 mg/hour to achieve the desired rate (as long as Patient D’s blood pressure remained within ordered parameters). Additional laboratory and diagnostic tests are ordered to rule out or identify any precipitating causes for the arrhythmia. The tests included a complete blood count, serum electrolytes, thyroid function studies, renal and liver function studies, and cardiac enzymes. A portable chest x-ray is performed. Patient D is questioned about his use of over-the-counter medications, alcoholic beverages, illicit drugs, and dietary supplements or herbal medicines. He is then transferred to an inpatient telemetry unit for further monitoring and clinical management.Comments and rationale: A diltiazem bolus may be repeated after 15 minutes if the desired rate control is not achieved from the initial bolus. The patient should be monitored for the development of side effects, such as hypotension and bradyarrhythmias. Following a bolus, a continuous infusion may then be started to achieve rate control. Blood pressure, ECG, and oxygen saturation monitoring should be done continuously during continuous intravenous infusion. Signs, such as falling blood pressure, decreasing oxygen saturation, and failure to control rate, should be noted and handled immediately. If intolerable side effects develop, the diltiazem will be discontinued and another medication prescribed. If side effects do not develop but rate control is not achieved, additional medications may be prescribed. Other medications used for rate control include procainamide, esmolol, metoprolol, and propranolol. Patients receiving multiple antiarrhythmics should be monitored closely as combination therapy may result in a cumulative effect on heart rate and rhythm, blood pressure, and the patient’s risk of developing congestive heart failure. To effectively manage atrial fibrillation, any underlying or precipitating causes should be identified and corrected. Precipitating causes may include anemia, consumption of alcohol, use of cocaine or other similar substance, hyperthyroidism, and electrolyte imbalances (especially potassium and magnesium). Atrial arrhythmias may also develop during acute stages of myocardial infarction.Patient D is transferred to an appropriate inpatient unit. Continuous ECG, blood pressure, and oxygen saturation monitoring are maintained. After one to two hours on the diltiazem drip, the patient’s heart rate drops and stabilizes at 80 to 90 bpm. Fibrillatory waves and an irregularly irregular ventricular response are clearly present on ECG. His laboratory data comes back showing normal serum electrolytes, renal function studies, thyroid function tests, and liver function tests. His hematocrit and hemoglobin are within normal limits. His cardiac enzymes and troponin are negative for myocardial infarction. His chest x-ray shows some congestion in his lower lobes consistent with mild congestive heart failure. Intravenous furosemide is ordered at a low dose to relieve the pulmonary congestion. Patient D’s vital signs improve. His blood pressure increases to 118/70 mm Hg, his respiratory rate slows to 18 breaths per minute, and he reports a decreased sensation of dyspnea and palpitations. After he stabilizes, the process of weaning the IV drip and starting the patient on oral diltiazem is initiated. Low-dose oral diltiazem is effective in maintaining rate control for Patient D when his activity is limited; however, when his activity level is increased, he begins to experience increasing episodes of an uncontrolled rate. The dose is increased, and rate control during activity improves. Evaluation of Patient D’s medical therapy shows his heart rate controlled at 70 to 80 bpm, his blood pressure is stable, and his symptoms relieved. Because of the high risk of thromboembolic events and serious consequences of CVA, Patient D is started on anticoagulation therapy. It is determined that he is at high risk for a CVA, and a heparin drip is started. Oral anticoagulation with warfarin also begins at this time. Routine monitoring of his partial thromboplastin time and PT/INR is ordered.Comments and rationale: Once rate control is achieved and maintained, the patient’s vital signs are stable, and other signs (e.g., signs of congestive heart failure, angina) have resolved, the patient may be changed to an oral dose for maintenance therapy. Short periods of a rapid rate may still occur, especially with exertion. If these episodes are intermittent and nonsustained, they may be effectively managed by adjusting the medication dose or adding additional antiarrhythmic medications. Rate control is considered successful if it alleviates troublesome symptoms, relieves dyspnea, increases activity tolerance, and improves the patient’s ability to perform activities of daily living. Anticoagulation is indicated for persons who remain in atrial fibrillation. Because the atria never fully contract in atrial fibrillation, stasis of blood can occur, which may lead to the development of clots. To prevent thromboembolic events such as CVA, anticoagulation should be started. For high-risk patients, warfarin is the drug of choice. In an inpatient setting, intravenous heparin may be used to provide adequate anticoagulation until warfarin reaches a therapeutic serum level.With careful questioning, it is determined that Patient D’s subjective symptoms of atrial fibrillation actually began a week or more prior to his admission. Patient D admits to feeling some palpitations and shortness of breath intermittently but did not seek medical care until the symptoms became severe. Current assessment of Patient D’s status shows normal breath sounds with absence of rales, the chest x-ray shows resolution of pulmonary congestion, vital signs are stable, and he is able to participate in activities of daily living and ambulate without trouble. It is decided to send   Patient D home on oral medication to maintain rate control, on warfarin for anticoagulation, and monitoring his status over the next several weeks to evaluate the effectiveness of this therapy.Comments and rationale: Options for long-term management of the patient with atrial fibrillation include restoration of normal sinus rhythm through pharmacologic or electrical cardioversion or rate control through use of oral antiarrhythmic medications. For patients known (or suspected) to be in atrial fibrillation for more than 48 hours, national standards recommend adequate anticoagulation for three weeks prior to either pharmacologic or electrical cardioversion. Or, a transesophageal echo may be performed to rule out a left atrial thrombus. If no thrombus exists, the patient may be safely cardioverted. For patients whose symptoms are controlled by rate control, oral therapy/antiarrhythmics coupled with oral anticoagulation often is sufficient treatment. If the patient develops recurrent episodes of rapid atrial fibrillation, or experiences troublesome symptoms at home despite optimal antiarrhythmic therapy, he/she may benefit from restoration of normal sinus rhythm by more aggressive methods.Patient D receives verbal and written instructions on how to take his warfarin and his antiarrhythmic medications. Appointments with the outpatient laboratory for PT/INR monitoring are set up, and a follow-up appointment with his physician is scheduled. Patient D is instructed on signs and symptoms to report to the doctor, including signs of bleeding and recurrence of his signs of rapid atrial fibrillation. Indications that medical therapy is effective in managing his atrial fibrillation include: ability to perform normal activities without symptoms of fatigue, dyspnea, dizziness, or palpitations; vital signs within desired parameters; absence of annoying or problematic side effects from medications; and absence of signs of thromboembolic events.    Health Science Science Nursing NURS 2362 Share QuestionEmailCopy link Comments (0)