The class is based on environment science and i am also going to mention instruction too as per my professor to complete this task and and also please go through with attachment it will help to complete the task. Instructions as follows:
This
template which attached, will provide you with the details necessary to finalize a quality
Final Lab Report. Utilize this template to complete the Week 5 Final Lab Report
and ensure that you are providing all of the necessary information and proper
format for the assignment.  Before you
begin, please note the following important information:

Carefully review
the Final Lab Report instructions before you begin this assignment.
The Final Lab
Report should cover the Drinking Water Quality Experiment from your Week
Two Lab.
Review instructor
feedback from the Week Three outline of the Final Lab Report and make
changes as necessary.
Review the Sample
Final Lab Report for an example of a final product on a different topic. Your
format should look like this sample report before submission.
Make sure your
final report is in proper APA format. 
Use the Sample Final Lab
Report as a guide, or obtain an APA
Template from the Writing Center.  

Run your Final Lab Report
through Turnitin using the student folder to ensure protection from accidental
plagiarism————————————————————————————————————Formate instructionTitle Page – This page must include the title of your report, your name, course name, instructor, and date submitted.Abstract – This section should provide a brief summary of the methods, results, and conclusions. It should allow the reader to see what was done, how it was done, and the results. It should not exceed 200 words and should be the last part written (although it should still appear right after the title page).Introduction – This section should include background information on water quality and an overview of why the experiment was conducted. It should first contain background information of similar studies previously conducted. This is accomplished by citing existing literature from similar experiments. Secondly, it should provide an objective or a reason why the experiment is being done. Why do we want to know the answer to the question we are asking? Finally, it should end the hypothesis from your Week Two experiment, and the reasoning behind your hypothesis. This hypothesis should not be adjusted to reflect the “right” answer. Simply place your previous hypothesis in the report here. You do not lose points for an inaccurate hypothesis; scientists often revise their hypotheses based on scientific evidence following the experiments.Materials and Methods – This section should provide a detailed description of the materials used in your experiment and how they were used. A step-by-step rundown of your experiment is necessary; however, it should be done in paragraph form, not in a list format. The description should be exact enough to allow for someone reading the report to replicate the experiment, however, it should be in your own words and not simply copied and pasted from the lab manual.Results – This section should include the data and observations from the experiment. All tables and graphs should be present in this section. In addition to the tables, you must describe the data in text; however, there should be no personal opinions or discussion outside of the results located within this area. Discussion – This section should interpret your data and provide conclusions. Discuss the meanings of your findings in this area. Was your hypothesis accepted or rejected, and how were you able to determine this? Did the results generate any future questions that might benefit from a new experiment? Were there any outside factors (i.e., temperature, contaminants, time of day) that affected your results? If so, how could you control for these in the future?Conclusions – This section should provide a brief summary of your work.References – List references used in APA format as outlined in the Ashford Writing Center.Note: make sure to complete the task all criteria should be follow and it should so the templet also attached with it where the task can start. there is also a short notes attached for week 5 which will also helped alot
sci207.w5.samplefinallabreport.pdf

sci207.w5.samplefinallabreport.pdf

ashford_week2_labreport_10395954_notes_export.pdf

sci207.w5.finalreporttemplate__1_.doc

sci_207_lab_5_short_note_copy.pdf

Unformatted Attachment Preview

Running Head: SAMPLE FINAL LAB REPORT
Sample Lab Report (The Optimal Foraging Theory)
Name
SCI 207 Dependence of Man on the Environment
Instructor
Date
1
SAMPLE FINAL LAB REPORT
2
Sample Lab Report
Abstract
The theory of optimal foraging and its relation to central foraging was examined by using
the beaver as a model. Beaver food choice was examined by noting the species of woody
vegetation, status (chewed vs. not-chewed), distance from the water, and circumference of trees
near a beaver pond in North Carolina. Beavers avoided certain species of trees and preferred
trees that were close to the water. No preference for tree circumference was noted. These data
suggest that beaver food choice concurs with the optimal foraging theory.
Introduction
In this lab, we explore the theory of optimal foraging and the theory of central place
foraging using beavers as the model animal. Foraging refers to the mammalian behavior
associated with searching for food. The optimal foraging theory assumes that animals feed in a
way that maximizes their net rate of energy intake per unit time (Pyke et al., 1977). An animal
may either maximize its daily energy intake (energy maximizer) or minimize the time spent
feeding (time minimizer) in order to meet minimum requirements. Herbivores commonly behave
as energy maximizers (Belovsky, 1986) and accomplish this maximizing behavior by choosing
food that is of high quality and has low-search and low-handling time (Pyke et al., 1977).
The central place theory is used to describe animals that collect food and store it in a
fixed location in their home range, the central place (Jenkins, 1980). The factors associated with
the optimal foraging theory also apply to the central place theory. The central place theory
predicts that retrieval costs increase linearly with distance of the resource from the central place
SAMPLE FINAL LAB REPORT
3
(Rockwood and Hubbell, 1987). Central place feeders are very selective when choosing food
that is far from the central place since they have to spend time and energy hauling it back to the
storage site (Schoener, 1979).
The main objective of this lab was to determine beaver (Castor canadensis) food selection
based on tree species, size, and distance. Since beavers are energy maximizers (Jenkins, 1980;
Belovsky, 1984) and central place feeders (McGinley & Whitam, 1985), they make an excellent
test animal for the optimal foraging theory. Beavers eat several kinds of herbaceous plants as
well as the leaves, twigs, and bark of most species of woody plants that grow near water (Jenkins
& Busher, 1979). By examining the trees that are chewed or not-chewed in the beavers’ home
range, an accurate assessment of food preferences among tree species may be gained (Jenkins,
1975). The purpose of this lab was to learn about the optimal foraging theory. We wanted to
know if beavers put the optimal foraging theory into action when selecting food.
We hypothesized that the beavers in this study will choose trees that are small in
circumference and closest to the water. Since the energy yield of tree species may vary
significantly, we also hypothesized that beavers will show a preference for some species of trees
over others regardless of circumference size or distance from the central area. The optimal
foraging theory and central place theory lead us to predict that beavers, like most herbivores,
will maximize their net rate of energy intake per unit time. In order to maximize energy, beavers
will choose trees that are closest to their central place (the water) and require the least retrieval
cost. Since beavers are trying to maximize energy, we hypothesized that they will tend to select
some species of trees over others on the basis of nutritional value.
Methods
This study was conducted at Yates Mill Pond, a research area owned by the North
SAMPLE FINAL LAB REPORT
Carolina State University, on October 25th, 1996. Our research area was located along the edge
of the pond and was approximately 100 m in length and 28 m in width. There was no beaver
activity observed beyond this width. The circumference, the species, status (chewed or notchewed), and distance from the water were recorded for each tree in the study area. Due to the
large number of trees sampled, the work was evenly divided among four groups of students
working in quadrants. Each group contributed to the overall data collected.
We conducted a chi-squared test to analyze the data with respect to beaver selection of
certain tree species. We conducted t-tests to determine (1) if avoided trees were significantly
farther from the water than selected trees, and (2) if chewed trees were significantly larger or
smaller than not chewed trees. Mean tree distance from the water and mean tree circumference
were also recorded.
Results
4
SAMPLE FINAL LAB REPORT
Overall, beavers showed a preference for certain species of trees, and their preference
was based on distance from the central place. Measurements taken at the study site show that
5
SAMPLE FINAL LAB REPORT
6
beavers avoided oaks and musclewood (Fig. 1) and show a significant food preference. No
avoidance or particular preference was observed for the other tree species. The mean distance of
8.42 m away from the water for not-chewed trees was significantly greater than the mean
distance of 6.13 m for chewed trees (Fig. 2). The tree species that were avoided were not
significantly farther from the water than selected trees. For the selected tree species, no
significant difference in circumference was found between trees that were not chewed
(mean=16.03 cm) and chewed (mean=12.80 cm) (Fig. 3).
Discussion
Although beavers are described as generalized herbivores, the finding in this study
related to species selection suggests that beavers are selective in their food choice. This finding
agrees with our hypothesis that beavers are likely to show a preference for certain tree species.
Although beaver selection of certain species of trees may be related to the nutritional value,
additional information is needed to determine why beavers select some tree species over others.
Other studies suggested that beavers avoid trees that have chemical defenses that make the tree
unpalatable to beavers (Muller-Schawarze et al., 1994). These studies also suggested that
beavers prefer trees with soft wood, which could possibly explain the observed avoidance of
musclewood and oak in our study.
The result that chewed trees were closer to the water accounts for the time and energy
spent gathering and hauling. This is in accordance with the optimal foraging theory and agrees
with our hypothesis that beavers will choose trees that are close to the water. As distance from
the water increases, a tree’s net energy yield decreases because food that is farther away is more
likely to increase search and retrieval time. This finding is similar to Belovskyís finding of an
SAMPLE FINAL LAB REPORT
7
inverse relationship between distance from the water and percentage of plants cut.
The lack of any observed difference in mean circumference between chewed and not
chewed trees does not agree with our hypothesis that beavers will prefer smaller trees to larger
ones. Our hypothesis was based on the idea that branches from smaller trees will require less
energy to cut and haul than those from larger trees. Our finding is in accordance with other
studies (Schoener, 1979), which have suggested that the value of all trees should decrease with
distance from the water but that beavers would benefit from choosing large branches from large
trees at all distances. This would explain why there was no significant difference in
circumference between chewed and not-chewed trees.
This lab gave us the opportunity to observe how a specific mammal selects foods that
maximize energy gains in accordance with the optimal foraging theory. Although beavers adhere
to the optimal foraging theory, without additional information on relative nutritional value of
tree species and the time and energy costs of cutting certain tree species, no optimal diet
predictions may be made. Other information is also needed about predatory risk and its role in
food selection. Also, due to the large number of students taking samples in the field, there may
have been errors which may have affected the accuracy and precision of our measurements. In
order to corroborate our findings, we suggest that this study be repeated by others.
Conclusion
The purpose of this lab was to learn about the optimal foraging theory by measuring tree
selection in beavers. We now know that the optimal foraging theory allows us to predict foodseeking behavior in beavers with respect to distance from their central place and, to a certain
extent, to variations in tree species. We also learned that foraging behaviors and food selection is
SAMPLE FINAL LAB REPORT
not always straightforward. For instance, beavers selected large branches at any distance from
the water even though cutting large branches may increase energy requirements. There seems to
be a fine line between energy intake and energy expenditure in beavers that is not so easily
predicted by any given theory.
8
SAMPLE FINAL LAB REPORT
9
References
Belovsky, G.E. (1984). Summer diet optimization by beaver. The American Midland Naturalist.
111: 209-222.
Belovsky, G.E. (1986). Optimal foraging and community structure: implications for a guild of
generalist grassland herbivores. Oecologia. 70: 35-52.
Jenkins, S.H. (1975). Food selection by beavers:› a multidimensional contingency table analysis.
Oecologia. 21: 157-173.
Jenkins, S.H. (1980). A size-distance relation in food selection by beavers. Ecology. 61: 740746.
Jenkins, S.H., & P.E. Busher. (1979). Castor canadensis. Mammalian Species. 120: 1-8.
McGinly, M.A., & T.G. Whitham. (1985). Central place foraging by beavers (Castor
Canadensis): a test of foraging predictions and the impact of selective feeding on the
growth form of cottonwoods (Populus fremontii). Oecologia. 66: 558-562.
Muller-Schwarze, B.A. Schulte, L. Sun, A. Muller-Schhwarze, & C. Muller-Schwarze. (1994).
Red Maple (Acer rubrum) inhibits feeding behavior by beaver (Castor canadensis).
Journal of Chemical Ecology. 20: 2021-2033.
Pyke, G.H., H.R. Pulliman, E.L. Charnov. (1977). Optimal foraging. The Quarterly Review of
Biology. 52: 137-154.
Rockwood, L.L., & S.P. Hubbell. (1987). Host-plant selection, diet diversity, and optimal
foraging in a tropical leaf-cutting ant. Oecologia. 74: 55-61.
Schoener, T.W. (1979). Generality of the size-distance relation in models of optimal feeding.
The American Naturalist. 114: 902-912.
SAMPLE FINAL LAB REPORT
10
*Note: This document was modified from the work of Selena Bauer, Miriam Ferzli, and Vanessa
Sorensen, NCSU.
Running Head: SAMPLE FINAL LAB REPORT
Sample Lab Report (The Optimal Foraging Theory)
Name
SCI 207 Dependence of Man on the Environment
Instructor
Date
1
SAMPLE FINAL LAB REPORT
2
Sample Lab Report
Abstract
The theory of optimal foraging and its relation to central foraging was examined by using
the beaver as a model. Beaver food choice was examined by noting the species of woody
vegetation, status (chewed vs. not-chewed), distance from the water, and circumference of trees
near a beaver pond in North Carolina. Beavers avoided certain species of trees and preferred
trees that were close to the water. No preference for tree circumference was noted. These data
suggest that beaver food choice concurs with the optimal foraging theory.
Introduction
In this lab, we explore the theory of optimal foraging and the theory of central place
foraging using beavers as the model animal. Foraging refers to the mammalian behavior
associated with searching for food. The optimal foraging theory assumes that animals feed in a
way that maximizes their net rate of energy intake per unit time (Pyke et al., 1977). An animal
may either maximize its daily energy intake (energy maximizer) or minimize the time spent
feeding (time minimizer) in order to meet minimum requirements. Herbivores commonly behave
as energy maximizers (Belovsky, 1986) and accomplish this maximizing behavior by choosing
food that is of high quality and has low-search and low-handling time (Pyke et al., 1977).
The central place theory is used to describe animals that collect food and store it in a
fixed location in their home range, the central place (Jenkins, 1980). The factors associated with
the optimal foraging theory also apply to the central place theory. The central place theory
predicts that retrieval costs increase linearly with distance of the resource from the central place
SAMPLE FINAL LAB REPORT
3
(Rockwood and Hubbell, 1987). Central place feeders are very selective when choosing food
that is far from the central place since they have to spend time and energy hauling it back to the
storage site (Schoener, 1979).
The main objective of this lab was to determine beaver (Castor canadensis) food selection
based on tree species, size, and distance. Since beavers are energy maximizers (Jenkins, 1980;
Belovsky, 1984) and central place feeders (McGinley & Whitam, 1985), they make an excellent
test animal for the optimal foraging theory. Beavers eat several kinds of herbaceous plants as
well as the leaves, twigs, and bark of most species of woody plants that grow near water (Jenkins
& Busher, 1979). By examining the trees that are chewed or not-chewed in the beavers’ home
range, an accurate assessment of food preferences among tree species may be gained (Jenkins,
1975). The purpose of this lab was to learn about the optimal foraging theory. We wanted to
know if beavers put the optimal foraging theory into action when selecting food.
We hypothesized that the beavers in this study will choose trees that are small in
circumference and closest to the water. Since the energy yield of tree species may vary
significantly, we also hypothesized that beavers will show a preference for some species of trees
over others regardless of circumference size or distance from the central area. The optimal
foraging theory and central place theory lead us to predict that beavers, like most herbivores,
will maximize their net rate of energy intake per unit time. In order to maximize energy, beavers
will choose trees that are closest to their central place (the water) and require the least retrieval
cost. Since beavers are trying to maximize energy, we hypothesized that they will tend to select
some species of trees over others on the basis of nutritional value.
Methods
This study was conducted at Yates Mill Pond, a research area owned by the North
SAMPLE FINAL LAB REPORT
Carolina State University, on October 25th, 1996. Our research area was located along the edge
of the pond and was approximately 100 m in length and 28 m in width. There was no beaver
activity observed beyond this width. The circumference, the species, status (chewed or notchewed), and distance from the water were recorded for each tree in the study area. Due to the
large number of trees sampled, the work was evenly divided among four groups of students
working in quadrants. Each group contributed to the overall data collected.
We conducted a chi-squared test to analyze the data with respect to beaver selection of
certain tree species. We conducted t-tests to determine (1) if avoided trees were significantly
farther from the water than selected trees, and (2) if chewed trees were significantly larger or
smaller than not chewed trees. Mean tree distance from the water and mean tree circumference
were also recorded.
Results
4
SAMPLE FINAL LAB REPORT
Overall, beavers showed a preference for certain species of trees, and their preference
was based on distance from the central place. Measurements taken at the study site show that
5
SAMPLE FINAL LAB REPORT
6
beavers avoided oaks and musclewood (Fig. 1) and show a significant food preference. No
avoidance or particular preference was observed for the other tree species. The mean distance of
8.42 m away from the water for not-chewed trees was significantly greater than the mean
distance of 6.13 m for chewed trees (Fig. 2). The tree species that were avoided were not
significantly farther from the water than selected trees. For the selected tree species, no
significant difference in circumference was found between trees that were not chewed
(mean=16.03 cm) and chewed (mean=12.80 cm) (Fig. 3).
Discussion
Although beavers are described as generalized herbivores, the finding in this study
related to species selection suggests that beavers are selective in their food choice. This finding
agrees with our hypothesis that beavers are likely to show a preference for certain tree species.
Although beaver selection of certain species of trees may be related to the nutritional value,
additional information is needed to determine why beavers select some tree species over others.
Other studies suggested that beavers avoid trees that have chemical defenses that make the tree
unpalatable to beavers (Muller-Schawarze et al., 1994). These studies also suggested that
beavers prefer trees with soft wood, which could possibly explain the observed avoidance of
musclewood and oak in our study.
The result that chewed trees were closer to the water accounts for the time and energy
spent gathering and hauling. This is in accordance with the optimal foraging theory and agrees
with our hypothesis that beavers will choose trees that are close to the water. As distance from
the water increases, a tree’s net energy yield decreases because food that is farther away is more
likely to increase search and retrieval time. This finding is similar to Belovskyís finding of an
SAMPLE FINAL LAB REPORT
7
inverse relationship between distance from the water and percentage of plants cut.
The lack of any observed difference in mean circumference between chewed and not
chewed trees does not agree with our hypothesis that beavers will prefer smaller trees to larger
ones. Our hypothesis was based on the idea that branches from smaller trees will require less
energy to cut and haul than those from larger trees. Our finding is in accordance with other
studies (Schoener, 1979), which have suggested that the value of all trees should decrease with
distance from the water but that beavers would benefit from choosing large branches from large
trees at all distances. This would explain why there was no significant difference in
circumference between chewed and not-chewed trees.
This lab gave us the opportunity to observe how a specific mammal selects foods that
maximize energy gains in accordance with the optimal foraging theory. Although beavers adhere
to the optimal foraging theory, without additional information on relative nutritional value of
tree species and the time and energy costs of cutting certain tree species, no optimal diet
predictions may be made. Other information is also needed about predatory risk and its role in
food selection. Also, due to the large number of students taking samples in the field, there may
have been errors which may have affected the accuracy and precision of our measurements. In
order to corroborate our findings, we suggest that this study be repeated by others.
Conclusion
The purpose of this lab was to learn about the optimal foraging theory by measuring tree
selection in beavers. We now know that the optimal foraging theory allows us to predict foodseeking behavior in beavers with respect to distance from their central place and, to a certain
extent, to variations in tree species. We also learned that foraging behaviors and food selection is
SAMPLE FINAL LAB REPORT
not always straightforward. For instance, beavers selected large branches at any distance from
the water even though cutting large branches may increase energy requirements. There seems to
be a fine line between energy intake and energy expenditure in beavers that is not so easily
predicted by any given th …
Purchase answer to see full
attachment